# シラスを原料としたコンクリート用混和材の開発

地域資源部シラス研究開発室 ○増永卓朗,袖山研一,吉村幸雄
東京大学 友寄 篤,野口貴文
株式会社プリンシプル 東 和朗

#### 1. はじめに

当センターの開発した乾式比重選別技術は、入戸火砕流堆積物である普通シラスを結晶質、軽石質、 火山ガラス質、粘土質分の4種類に選別可能である。火山ガラス質を粉砕した火山ガラス微粉末(以 下、VGP)は、コンクリート用混和材として用いることができる。本研究では、コンクリートの劣化の 原因となる塩害への抵抗性を調査するため、VGPセメント置換コンクリートの塩化物イオンの浸透拡 散について実験を行った。また、VGPの基礎物性の調査を実施し、さらに既存の混和材であるシリカ フューム(SF)およびフライアッシュ(FA)と粉体の形状や化学組成、水蒸気吸着特性について比較した。

## 2. 実験方法

#### 2.1 試料の製造

入戸シラスの5mmのふるいを通過した粒分を原鉱とした。含水率1%以下とした原鉱を乾式比重選別により分離回収した火山ガラス質(VG)を原料とし、ローラミルで粉砕したものをRとした。Rをジェットミルで二次粉砕して微粉RJFと粗粉RJCとした。また、Rを汎用サイクロンで分級して、微粉RFと粗粉RCとした。これら5種類のVGPを実験に使用した。乾式比重選別技術とVGPの製造方法を図1に示す。

## 2.2 浸漬法による塩化物イオン浸透抵抗性

鉄筋コンクリート内部への塩化物イオンの浸透は構造物の劣化につながるため、混和材による浸透 抵抗性への影響に関する検証は重要である。「浸漬によるコンクリート柱の塩化物イオンの見掛けの拡 散係数試験方法(案)(JSCE-G572-2003)」に準拠して供試体を用意した。また、全塩化物イオンの測 定は、JIS A 1154「硬化コンクリート中に含まれる塩化物イ

オンの試験方法」に準拠し、イオンクロマトグラフ法により 塩化物イオンを定量した。

## 2.3 混和材の形状観察

コンクリート練りにおいて生コンの流動性は重要である が,混和材の形状が影響を与えると言われている。ジェット ミル粉砕によるVGP(RJF, RJC)について電子顕微鏡で形状観 察を行い,SFおよびFAと比較した。

## 2. 4 混和材の化学組成

VGPについて化学組成を測定し,条件ごとの化学組成への 影響を検討した。また,VGPの測定結果とSFとFAの規格を化 学組成の観点から混和材ごとの比較をした。

## 2.5 混和材の水蒸気吸着測定

セメントとの結合や化学混和剤の吸着などについて系統的 な検討をするためには混和材表面について形状以外の情報も 必要である。表面物性について検討するため水蒸気吸着測定 を行い,SFとFAを比較した。



#### 3. 実験結果

# 3.1 浸漬法による塩化物イオン浸透抵抗性

図2は、塩水に21週浸漬したVGPのRFセメント置換率5 %、10%および無置換(Plain)のコンクリートの深さ方向 に含まれる塩化物イオン濃度である。Plainでは塩化物イ オンが深さ35mmまで浸透したのに対して、5%置換では 深さ20mmまで、10%置換ではほとんど浸透していなかっ た。この結果から、VGPでセメントの一部を置換すること によりコンクリート内部にある鉄筋の腐食を抑制でき、 港湾部のような過酷な環境下で使用できる耐久性の高い コンクリートであることが示唆された。



図2 コンクリート深さ方向に対する 塩化物イオン濃度





#### 3.2 混和材の形状観察

図3に混和材の電子顕微鏡写真を示す。SFとFAは球 形だが,RJFとRJCは粉砕によって角張っている。VGP表 面に鱗状の風化物は見られなかった。

# 3.3 混和材の化学組成

VGPの化学組成と比表面積,SFとFAのJISの基準を表1 に示す。FAの比表面積は、ブレーン値のため記載してい ない。SFおよびFAの基準をVGPに当てはめると、SiO<sub>2</sub>は 約70%,MgOは約0.3%,強熱減量は3%以下であり、 SiO<sub>2</sub>の含有率がSFとFAの中間に位置していた。

# 3.4 混和材の水蒸気吸着測定

図4にRJF, SF, FAの水蒸気吸着等温線を示す。RJFは 比表面積約15m<sup>2</sup>/g以上のSFと比べて,水蒸気相対圧0.05 ~0.3付近で吸着量が多かった。低圧部分の吸着量から, 細孔の存在や,表面が親水性を持つことが示唆された。

#### 4. おわりに

普通シラスから選別された火山ガラス質を粉砕および 分級して製造されるVGPは、コンクリート用混和材とし て使用可能である。さらに、塩化物イオンの浸透を抑制 でき、高耐久性コンクリートへの使用可能性が示唆され た。また、各測定結果から、SFやFAとは異なる粉体特性 を有することがわかった。

#### 表1 VGPの化学組成と比表面積

| $\setminus$                                | 火山ガラス <b>微粉末 VGP</b> |      |      |      |      | シリカ<br>フューム<br>JISA6207 | <b>フライアッシュ</b><br>JISA6201 |          |
|--------------------------------------------|----------------------|------|------|------|------|-------------------------|----------------------------|----------|
| %                                          | R                    | RJF  | RJC  | RF   | RC   | SF                      | FA<br>I 種                  | FA<br>Ⅱ種 |
| SiO <sub>2</sub>                           | 73.9                 | 72.4 | 74.3 | 73.0 | 74.3 | 85以上                    | 45以上                       | 45以上     |
| TiO <sub>2</sub>                           | 0.20                 | 0.21 | 0.20 | 0.21 | 0.19 |                         |                            |          |
| Al <sub>2</sub> O <sub>3</sub>             | 12.8                 | 13.3 | 12.6 | 13.1 | 12.6 | · · · ·                 | Î                          |          |
| Fe <sub>2</sub> O <sub>3</sub>             | 1.89                 | 2.33 | 1.76 | 2.38 | 1.78 |                         | 1                          |          |
| MnO                                        | 0.05                 | 0.06 | 0.05 | 0.06 | 0.05 |                         | l l                        |          |
| MgO                                        | 0.30                 | 0.37 | 0.26 | 0.32 | 0.28 | 5以下                     |                            |          |
| CaO                                        | 1.44                 | 1.56 | 1.40 | 1.51 | 1.39 | 3                       | l l                        |          |
| Na <sub>2</sub> O                          | 3.78                 | 3.57 | 3.91 | 3.59 | 3.75 |                         |                            |          |
| K <sub>2</sub> O                           | 3.34                 | 3.36 | 3.38 | 3.32 | 3.35 |                         |                            |          |
| P2O5                                       | 0.03                 | 0.04 | 0.03 | 0.04 | 0.03 |                         |                            |          |
| 強熱減量                                       | 2.3                  | 2.8  | 2.0  | 2.5  | 2.2  | 4以下                     | 3以下                        | 5以下      |
| 比表面積<br>BET法<br>m <sup>2</sup> /g<br>300℃乾 | 6.7                  | 16.1 | 4.1  | 10.4 | 2.7  | 15以上                    |                            |          |



図4 RJF, SF, FAの水蒸気等温吸着曲線