汎用X線装置を用いた電子部品の内部観察法

瀬戸口正和*, 牟禮雄二*

Observation Method for Internal Structure of Electronic Parts Using Multipurpose X-ray Device

Masakazu SETOGUCHI and Yuji MURE

電子部品は、焦点寸法が小さいマイクロフォーカスX線装置を用いることで、内部構造を高倍率で観察できるようになったが、装置価格が非常に高額であることから、普及が進んでいない状況である。このため、溶接部の検査 等で普及している焦点寸法が大きい汎用X線装置による拡大撮影を試みた。

焦点寸法が大きい汎用X線装置では、焦点寸法の大きさに起因する焦点ボケが原因で、2倍拡大撮影でも鮮明な 画像が得られない。しかし、X線の線束を絞るコリメータを用いることで、X線の照射範囲は絞られるものの、焦 点ボケが改善されたX線画像を取得することができた。

また,コリメータを用いて撮影した画像は,幾何学倍率よりも拡大されていることからコリメータが擬似的に焦 点位置になっていることがわかった。

Keyword:X線,電子部品,内部観察,拡大撮影

1. 緒 言

電子部品は高機能・小型化の要求から高密度化が進み, 光学的な外観検査のみでは品質確認が困難となっているため,X線を用いた内部観察が実施されている。

X線により小型電子部品の微細な内部構造を観察するためには,拡大撮影されたX線画像が必要であるが,汎用X線装置として普及しているミリフォーカスX線発生器を用いた拡大撮影では,焦点寸法と幾何学的配置(拡大撮影)により像の外周部に半映像としてボケ(以下,焦点ボケと記す)が生じ,鮮明な画像が得られない。焦点ボケの大きさは,焦点寸法と焦点-撮影対象物-X線ディテクタの相互距離の大小により変化する¹⁾。

近年は、X線焦点寸法が小さく高精細画像を得ることが できるマイクロフォーカスX線装置を用いた内部観察や検 査に関する多数の報告^{2)~4)}が行われている。しかし、装 置価格が非常に高額であることから、未だ普及していない 状況である。このような状況の中で、溶接部の検査等で普 及している焦点寸法が大きい汎用のミリフォーカスX線装 置を用いて小型電子部品の内部構造が観察可能となれば、 装置の利用範囲を大幅に拡大することができる。

X線を用いた各種撮影方法の中に,X線源または被写体 を移動させながら撮影する移動撮影方法(インモーション ・ラジオグラフィー)⁵⁾がある。これは,放射線の線束を 細隙スリットで絞り,X線をほぼ並行ビームにして管の円 周部や長尺部品を連続して撮影する方法である。

本研究では、移動撮影方法を参考に、汎用のミリフォー

カスX線発生器に細隙スリットとしてコリメータを取り付 け焦点ボケの改善を試み,静止撮影で精細な拡大画像を得 るための検討を行った。

2. 実験方法

2.1 実験装置

撮影に使用したミリフォーカスX線発生器(フィリップ ス製MG226/4.5)は、陽極設置型の直流X線方式(コンス タントポテンシャル型)で、ベリリウム窓メタルX線管を 使用し、軟X線と、アルミフィルターを付加することで硬 X線を照射できる公称焦点寸法(旧規格IEC336)2.0×2.0 mmと0.6×0.6mmの二重焦点を有する装置である。また、デ ジタルX線透過画像を取得するため、1 画素が水平7.2µm ×垂直5.6µmで2,720万画素4,096階調(12bit)のモノク ロCCDのX線エリアセンサ(アールエフ製NAOMI/NX-04S) を用いた。X線発生器とX線エリアセンサの外観写真を 図1に示す。

図1 X線発生器とX線エリアセンサ

2.2 撮影方法

撮影方法の模式図を図2に示す。X線発生器から照射さ れたX線は、コリメータで絞られ撮影対象物を透過してX 線エリアセンサに到達し、画像が表示される。撮影対象物 をコリメータとX線エリアセンサ間に配置し、撮影対象物 の位置がX線発生器からの距離に応じて拡大率が変化す る。ここで、幾何学的拡大率(M)は、(1)式で表される。

$$M = (L1 + L2) / L1$$
 (1)

L1: 焦点から撮影対象物までの距離

L2:撮影対象物からX線エリアセンサまでの距離

2.3 撮影条件

撮影条件を表1に示す。X線発生器(線源)からX線エ リアセンサまでの距離は一定(700mm)とした。撮影対象 物をセンサに近づけた等倍撮影と,線源から350mmの位置 に置いた2倍拡大撮影を行った。線質は,アルミフィルタ 取付け部(焦点から27mm)にコリメータを取付けるため, 軟X線を使用して撮影した。コリメータは,1個ないし2 個使用し,コリメータ間の距離は14mmとして,コリメータ の穴径を変えて画像に及ぼす影響を調べた。X線照射時間 は,1秒で画像を取得し,X線出力については管電圧と管 電流を変化させ,画像を確認しながら適正条件を設定した。 焦点寸法は,一般的に普及している比較的安価な装置が大 焦点の寸法に近いことから,汎用性を考慮して大焦点(旧 規格IEC336)2.0×2.0mmによる撮影で行った。

表1 撮影条件

項目	撮影条件
線源(焦点)からセンサまでの距離	700mm
線質	軟X線
コリメータ取付け位置	焦点から27mm
コリメータ間距離	14mm
コリメータ穴径	0.1~1.6mm
X線照射時間(画像取得時間)	1秒
管電圧 (kVp)	20~110
管電流 (mA)	$1 \sim 15$
公称焦点寸法(大焦点)	2.0×2.0 mm

3. 撮影結果

3.1 放射線透過試験用透過度計の撮影

放射線透過試験で識別限界コントラストを確認するため に用いられている放射線透過試験用透過度計(JIS Z 2306 -2000)(以下,透過度計と記す)による本装置での等倍撮 影と拡大撮影時の空間識別能の把握を行った。その際の評 価尺度として透過度計識別度(以下,識別度と記す)を求 めた。ここで,識別度は,(2)式で表される。

識別度(%) = 確認可能な最小線径(mm) / 材厚(mm) (2)

材厚:撮影対象物の全厚さ

撮影に使用した透過度計は、針金形透過度計の一般形 (図3及び4)で材質がステンレス(SUS304)の呼び番号 02S(外観写真を図3(a))とアルミニウム(A1050WS)の 呼び番号04A(外観写真を図4(a))の2種類である。なお、 これらは、直径の異なる7本の線によって構成され、左側 から右側へ順次太くなるように配列されている。透過度計 の線径及び線径の配列を表2に示す。

表2 透過度計の線径及び線径の配列

呼び番号	線径及び線径の配列 (µm)						
02S	50	63	80	100	125	160	200
04A	100	125	160	200	250	320	400

透過度計単体での撮影の場合,02Sが等倍撮影(図3(b)), 2倍拡大撮影ともに最小線径の50µm,04Aが等倍撮影(図4 (b))で最小線径の100µmの線を確認することができた。

(a)外観写真(b)等倍撮影図3 針金形透過度計の一般形(02S)

(a) 外観写真(b) 等倍撮影図4 針金形透過度計の一般形(04A)

そこで、厚さ及び材種の影響に対する空間識別能を確認 するために、ステンレス板(厚さ1mmのSUS304板)とアル ミニウム板(厚さ2~15mmのA1100板)に02Sを、アルミニ ウム板(厚さ5mmのA1100板)に04Aを重ねて同時撮影した。

撮影の結果,ステンレスにおける厚さの影響は,02Sに 板厚1mmのSUS304板を同時撮影した場合,管電圧70kVp, 管電流2mAの等倍撮影(図5(a))で63µm(識別度6.3%) の空間識別能が,2倍拡大撮影(図5(b))を行うと100µm (識別度10%)の空間識別能となり,線もボケて不鮮明と なった。そこで,2個のコリメータ(線源側の穴径0.8mm, 2個目の穴径1.6mm)を用いて管電圧65kVp,管電流8mAの 2倍拡大撮影(図6)を行った場合,63µm(識別度6.3%) の線径が確認でき,空間識別能が向上した。また,アルミ ニウムの場合,04Aに板厚5mmのA1100板を同時撮影した場 合,管電圧42kVp,管電流3mAの等倍撮影(図7)で100µm (識別度2%)の空間識別能であった。

比較参考のために、マイクロフォーカスX線装置(ソフ テックス製3DV-901-S)でのステンレス板(厚さ1mmのSUS 304板)に02Sを重ねた等倍及び拡大撮影も行った。撮影条 件は、焦点寸法10µmで、線源からX線I.I.(イメージイ ンテンシファイア)までの距離を400mm,管電圧100kVp, 管電流0.1mAとした。

マイクロフォーカスX線装置で02Sに板厚1mmのSUS304 板を同時撮影した場合,等倍撮影で125µm(識別度12.5%) 及び2倍拡大撮影で80µm(識別度8%)の空間識別能で あったが、4倍拡大撮影(図8)を行うことで50μm(識 別度5%)の線を識別できた。これは、X線I.I.の中心解 像度が4.8LP/mm(約104μm)で拡大率に応じて、解像限界 に近い寸法までが識別できたと考えられる。

材種の影響についてはアルミニウム板上にステンレスの 線を確認するために、02SにA1100板の板厚を変えて同時撮 影した結果、10mmまでの等倍撮影で50µm(識別度0.5%)、 15mmの等倍撮影(図9)で80µm(識別度0.53%)の空間 識別能があり、軽金属板に対して透過しにくい金属の検出 は空間識別能が高いことがわかった。

以上のことから,等倍撮影ではミリフォーカスX線装置 もマイクロフォーカスX線装置もX線ディテクタの性能に 応じた識別度であったが,拡大撮影することでマイクロ フォーカスX線装置では識別度が向上し,汎用X線装置で は低下した。しかし,汎用X線装置でも2個のコリメータ を用いることで2倍拡大撮影において識別度が向上した。

図5 ステンレス板に02Sを重ねたときの撮影画像

図6 コリメータを用いた透過度計の2倍拡大撮影 線源側コリメータの穴径0.8mm, 2個目のコリメータの穴径1.6mm

図7 アルミニウム板に04Aを重ねたときの等倍撮影

図9 アルミニウム板に02Sを重ねたときの等倍撮影

3. 2 X線用解像カテストチャートの撮影

本装置での画像分解能を把握するために,X線用解像力 テストチャート(JIS Z 4916-1997)(以下,テストチャー トと記す)を用いて等倍撮影と2倍拡大撮影を行った。使 用したテストチャートはX線装置及びX線映像装置の解像 力を測定するときに用いられる高解像力用のR-2Pb50に準 拠したType11(図10)である。

その結果,管電圧25kVp,管電流3mAの等倍撮影で3.2 LP/mm(約156μm)の画像分解能であったが,管電圧25kVp, 管電流3mAの2倍拡大撮影で画像分解能が1.0LP/mm(500μm) (図11)となり,焦点ボケが大きく不鮮明な画像になるこ とがわかった。

管電圧60kVp, 管電流10mAの2倍拡大撮影で2個のコリ メータ(線源側の穴径0.4mm, 2個目の穴径0.8mm)を用い て撮影した場合, 4.0LP/mm (125µm)と画像分解能が向上 した(図12)。

図11 テストチャートの2倍拡大撮影

図12 コリメータを用いたテストチャートの
2倍拡大撮影
線源側コリメータの穴径0.4mm,
2個目のコリメータの穴径0.8mm

3.3 電子部品の撮影

IC (図13) の等倍撮影と2倍拡大撮影を行った。管電圧 30kVp,管電流3mAの等倍撮影(図14)では,画像は鮮明 に確認できるものの,小型で微細なため,内部構造まで確 認することは困難であった。画像処理で拡大することは可 能であるが,拡大撮影と違い,微細部を鮮明に拡大するこ とはできない(図15)。

管電圧30kVp,管電流5mAの2倍拡大撮影では,焦点ボ ケが大きくリード線も確認できない画像(図16)となった。 同条件の小焦点(公称焦点寸法0.4mm×0.4mm)で撮影した 画像(図17)では,鮮明な画像が得られることから焦点寸 法が拡大撮影に及ぼす影響が大きいことが確認できた。

管電圧70kVp,管電流5mAの2倍拡大撮影で2個のコリ メータ(線源側の穴径0.4mm,2個目の穴径0.8mm)を用い て撮影した場合,チップ内のボンディングワイヤは確認で きなかったが,リード線は確認できる画像(図18)が得ら れ,小焦点の画像と遜色ない鮮明さであることからコリ メータによる焦点ボケの改善が図られた。

また,コリメータを用いて撮影した画像は映像寸法が輪 郭周辺で幾何学倍率の2倍よりも拡大された2.13倍になっ ており,コリメータからの幾何学倍率と一致することから 擬似的にコリメータが焦点位置になっていることがわかっ た。

B

図16 ICの2倍拡大撮影

図17 ICの小焦点による2倍拡大撮影

図18 コリメーターを用いたICの2倍拡大撮影
線源側コリメータの穴径0.4mm,
2個目のコリメータの穴径0.8mm

4. 結 言

焦点寸法が大きいX線装置では,拡大撮影に及ぼす影響 が大きく,2倍拡大撮影でも焦点ボケが著しいことが確認 できた。

コリメータを用いて2倍拡大撮影を行うことで,X線の 照射範囲は絞られるものの,焦点ボケが改善したX線画像 を取得することができた。

また,コリメータを用いて撮影した画像は幾何学倍率よ りも拡大されていることからコリメータが擬似的に焦点位 置になっていた。

板厚の影響については、1mm厚のステンレス板の2倍拡 大撮影で100μm(識別度10%)の空間識別能であったが、 2個のコリメータを用いて2倍拡大撮影を行うことで63μm (識別度6.3%)と空間識別能が向上した。

材種の影響については、10mm厚までのアルミ板の等倍撮 影で50µm(識別度0.5%)のステンレス線を、15mm厚のア ルミ板の等倍撮影では80µm(識別度0.53%)のステンレ ス線を確認でき、軽金属板に対して透過しにくい金属の検 出は空間識別能が高いことがわかった。

以上のことから、マイクロフォーカスX線装置ほど拡大 撮影時での鮮明な画像は得られないものの汎用のミリ フォーカスX線装置でも2個のコリメータを用いること で、0.6×0.6mm程度の公称焦点寸法(旧規格IEC336)の撮 影と同程度のX線透過画像が取得できる手法であり、ミニ フォーカスX線装置の代用として有効活用が期待できる。

謝 辞

本研究でX線エリアセンサにより取得したデジタル画像 は、平成21年度に導入したJKA補助によるX線画像表示装 置を使用した。ここに謝意を表する。

参考文献

- (社)日本非破壞検査協会:放射線透過試験A,(社)日本非破壞検査協会(1981) p36-40
- 2)伊東秀高,増田信次,小森谷廣子:神奈川県産業技術 センター研究報告,14,34-35 (2008)
- 3) 藤井正司:非破壊検査, 58, 6, 214-218 (2009)
- 4) 横野泰和:溶接学会誌, 79, 8, 9-24 (2010)
- 5) 石井勇五郎編:新版 非破壞檢查工学, 産報出版(株) (1993) p205-207