上原守峰*,中村寿一**,徳永嘉美***

Reserch on Kimono Simulation of Oshima Pongee with a Small Figure

Morimine KANBARA, Toshikazu NAKAMURA and Yoshimi TOKUNAGA

大島紬部で編集・発行した「大島紬絣文様集」の仕上がり想定図をもとに、イラストレータの線形グラデーション機能を使用し小柄を立体的に表現する手法を探った。グラデーションパネルの中間点位置は白色・淡色糸は20%と80%、黒色・濃色糸は30%と70%に、カラー分岐点の中央部と両端部はHSB表色系の明度Bを変えて小柄の織組織を表した。その結果、名前の付いた285個の小柄にVeryPale・Pale・Lightトーンなど33種類に彩色した立体感のあるパターンが作成できた。

また、小柄パターンを画像処理して着姿シミュレーションを行った結果、鮮明な画質の印刷が可能となった。 Keyword:大島紬、小柄、経緯糸、立体表現、着姿シミュレーション

1. 緒言

大島紬産地で使用されている図案作成ソフトはMS-DOS版 からWindows版へと平成21年に国補事業でバージョンアッ プされ、最新のパソコン、プリンタ、スキャナなどを使用 できるようになった。また、MS-DOS版ソフトの加工図案、 締め図案、織り上がり想定図などの作図機能も継承したの で、多数の業者はソフトの更新を行っている。そのため、 平成12年度以降に産地に導入された着姿シミュレーション ソフトとデータが連動できるようになった。

しかし、Windows版ソフトを使用して作成した織り上が り想定図は、絣点を織組織の絣を簡略化した絣マスクに置 き換えるため、微細な小柄が描画できず着姿データとして 使用することが困難であった。

そこで,大島紬部で編集・発行された「大島紬絣文様集」 の白黒で描画された仕上がり想定図を基礎資料とし,立体 的な小柄パターンで着姿用のデータを作成して着姿シミュ レーションを行うことにした。

2. 小柄パターン作成と展開

小柄パターンは,大島紬反物をスキャナで取り込んだ状 態のように,経緯の織組織の明暗を忠実に再現する手法を 確立することを目標とした。

また、伝統的な黒地白絣、白地黒絣、紺地白絣だけでな くVeryPale・Pale・Lightトーンの淡い色彩を地色とした 小柄パターンも作成し、主に男性用として製造されている 小柄を女性用にも提案できるようにした。

*企画支援部

なお,編集する小柄パターンは種類が多いため,イラス トレータやフォトショップでの作業は,効率化を念頭にお いた。

使用したソフト及び機器は以下のとおりである。 Illustrator CS5:ベクトル,ドロー系ソフト Photoshop CS5:ラスター,ペイント系ソフト Tumugi 1.74:着姿シミュレーションソフト Epson Maxart PX-H10000:大判カラープリンタ Epson PX-G5300:A3カラープリンタ Epson ES-8000:A3スキャナ ノートパソコン:NEC VersaPro VD-B 0 S:Windows7

CPU: Intel Core i7

RAM : 4 GB

2.1 白・黒糸のカラー分岐点と中間点

大島紬の反物をマイクロスコープで観察すると, 平織り された経緯糸の交差部分の境界で明暗が生じ, 経糸を上か ら見ると中央部の手前が明るく, 両端部の奥が暗くなって いる(図1)。そこで, イラストレータのグラデーション 機能を用い, 中央部が明るく両端部が暗い糸を作成するこ とで立体感を表現した。

グラデーションパネルの中間点ABとカラー分岐点CDEは

図1 大島紬糸の明暗

^{**}研究主幹(企画支援担当)

^{***}大島紬部

スライダーで調整できるが、中間点ABは、ともに13~87% の可動範囲を持つので割合を検討した。図2の中間点位置 は、A値13%、B値87%である。

また、図3のカラー分岐点CDEの位置は、両端と中央に 固定して色濃度を検討した。

図4は白糸の立体感をグラデーションの中間点位置ABを 変えて描画した一部である。図4右のように中間点ABが中 央に寄ると、糸は立体感を増すが、それに伴い両端部は暗 部が増える。印刷すると、15.5算方眼の場合、経糸は原寸 で0.32mm矩形となり、立体感は表現できるが全体的に暗く なった。そこで、図4左のように中間点を設定して印刷す ると、中央部に指定した白色が反映された。そこで、中間 点位置は立体感にはやや劣るが総合的に判断し20%、80% とした。

白糸のカラー分岐点CDEは、中央Dには明るい色、両端CE は同系色の暗い色を指定し明暗で立体感を表現した。カ ラーピッカーは明度差で明暗が表現できるHSB表示系を用 いた。Hは色相で0~360°,Sは彩度で0~100%,Bは明度で 0~100%の値で設定できる。中央Dの明度Bを100%に固定 し、両端CEの明度Bを5%間隔で暗くした糸を印刷して検 討した結果、両端CEの明度Bは60%が最適であった。

黒糸は白糸より立体感を重視し、中間点ABは30%,70% の割合を用いた。黒糸の分岐点は、中央Dの明度Bを0%に すると立体感を表現できないので、両端CEの明度Bを0%と した。中央Dの黒色は可能な限り暗い色を用い、両端CEの 色と濃淡が認識できる濃度とした。中央Dの黒色の明度Bを 2%間隔で明るくしたデータを印刷して検討した結果、中 央Dの明度Bは10%が最適であった。白・黒糸の分岐点にお ける色設定は次のとおりである。

白糸	:	中央色	$\mathrm{H0}^{\circ}$	S0%	B100%
//	:	両端色	$\mathrm{H0}^\circ$	S0%	B60%
黒糸	:	中央色	$\mathrm{H0}^\circ$	S0%	B10%
//	:	両端色	$\mathrm{H0}^\circ$	S0%	B0%

2.2 白・黒糸

イラストレータを使用した白糸の作成は,以下の手順で 行った。黒糸は中間点を30%,70%にし,中央色と両端色 の色を変えて作成する。

- (1)「ファイル」「新規ドキュメント」でA4横サイズを選 択。「詳細」「カラーモード」でRGB、「ラスタライズ効果」 で高解像度、「ピクセルグリッドに整合」でオフを選択。
- (2) 「表示」「グリッドを表示」を選択。
- (3)「編集」「環境設定」の「ガイド・グリッド」を選択し「グリッド」に1mm,「分割数」に1を入力し正方形方眼を表示。
- (4) 「表示」「グリッドにスナップ」を選択。長方形ツー ルで1mm矩形の正方形を描画して,カラーピッカーのHSB 値に0,0,100を入力。
- (5) 描画した白色のオブジェクトを選択して「ツール」の 「グラデーションボタン」か、「グラデーションパネル」 の「グラデーションの塗り」をクリックしオプション表示 にする。種類をブラックにフェードと線形を選択すると 図5右のようになる。

図5 線形グラデーション

(6)図5左は、左側の始点から右側の終点に向かってのグ ラデーションになる。中央に明るく左右に暗いグラデー ションを設定するには、左右にある2個のカラー分岐点 間にもう1個の分岐点を増やす必要がある。そこで、カ ラー分岐点の両端間にある任意の中央部付近をマウスで クリックすると、図6左のように分岐点と中間点が各1 個ずつ追加される。

図6 分岐点,中間点の追加と位置決め

- (7) 不透明度を100%にし,分岐点と中間点の位置を決め る。中央分岐点は「位置」の項目に50を入力(図6左)。 左右の中間点は20と80を入力する(図6右)。
- (8) 中央分岐点をクリックし、カラーモードをHSB表示に する。HSBに0,0,100(図7左)を入力。同様に両端分 岐点のHSB値に0,0,60(図7右)を入力し、図8右の 白糸を作成する。図8左が最終のグラデーションパネル の状態である。

図7 分岐点のHSB値

図8 白糸グラデーション

2.3 白・黒布

イラストレータを使用した15.5算の白布の作成手順を以 下に示す。作業する前に、メニューの「表示」から「グリッ ドにスナップ」、「ウィンドウ」から「情報」を選択する。

「情報」に幅と高さがmmで表示されるが、1mm矩形で方眼 を作成しているので経緯糸の本数換算に使用できる。

なお、13算は経糸26本緯糸26本を用い、黒布も同様の方 法で作成する。

- (1) 図9の経糸は、2.2の手順で作成する。
- (2) 図10の緯糸は図9の経糸を複写し、オブジェクトの変 形で90°回転する。
- (3) 図11の経緯糸は経糸の上部に緯糸をスナップして作成 する。
- (4) 図12の基本パターンは、図11の経緯糸を複写して、オ ブジェクトの変形で180[°]回転しスナップして作成する。
- (5) 図12のデータを用いて複写を繰り返し,経糸31本緯糸 28本の白布を作成した後,1cm矩形の枠内に縮小変形す る(図13)。

2. 4 黒地白絣と白地黒絣

イラストレータで作成した「大島紬絣文様集Vol.1」の 仕上がり想定図の亀甲13個,ツガ45個,西郷33個,人名27 個,文字21個,十の字21個,花27個,バラ7個,風車23個, タスキ25個,長15個,ソテツ葉5個,チラシ14個の小柄合 計285個のデータを使用して,黒地白絣を作成した。

小柄の作成方法は、以下の手順で行った。

(1)図14の仕上がり想定図を最下部レイヤーに、その上に
 図15の白布、最上部に図16の黒布のレイヤーを配置し、
 すべてのレイヤーを表示する。

図18 画面上の透かし

図19 黒地白絣

- (2) 図17のように図14,15のレイヤーをロックし、ウィン ドウから透明コマンドをクリックし、白・黒布を不透明 度を30%にすると最下部に配置した図柄が経緯方向を認 識できる図18の状態になるので、最上部の黒糸を1個ず つ取り除く。
- (3)最後に白・黒布の不透明度を100%に戻す(図19)。黒 地白絣285個の全小柄パターンは、パソコンでの操作性 を考慮してファイルを5分割した。なお、白地黒絣は黒 地白絣の白・黒色を他色に置き換えて作成した。

2.5 淡色地黒絣と濃色地白絣

淡色糸の色彩は, M. M. カラーチャート II¹⁾ を使用した。 図20は5R赤系のトーン図であるが,上に行くほど明度が高 く,右に行くほど彩度が高くなっている。この中から「あ わい: Pale (P)」,「ごくあわい: Very Pale 2 (VP. 2)」,「よ わい: Light 3 (L3)」のトーン3種類を選定した。その他, 5YR橙系,5Y黄系,5GY黄緑系,5G緑系,5BG青緑系,5B青 系,5PB青紫系,5P紫系,5RP赤紫系の全10色を選んだ。

淡色地黒絣は図21の白地黒絣のファイルを使用し、白地 部分を淡色に変換した。

以下,淡色地黒絣の5RPaleトーンでの色変換手順を示す。

- (1) 作成した白地黒絣小柄パターンを読み込む(図21)。
- (2) パターンを構成している白糸グラデーションを経緯糸 どちらか1個を選択する。
- (3) 選択した状態で「メニュー」から「選択」,「共通のア ピアランス」をクリックすると,図21の全ての小柄パター ンの白糸が選択され色変換できる状態となる(図22)。
- (4) 図20の5RPaleトーンのマンセル値5R8/6をRGBに変換す る。マンセル値を入力すると、ディスプレイに近似色を 表示するソフト「色出し名人」を使用した。RGB値はイ ラストレータのスポイトツールで色をクリックすると、 カラーパレットに表示される。
- (5) グラデーションパネルの中央分岐点(図23)をクリックしてR255,G176,B173を入力する(図24)。カラーモードをRGBからHSBにすると,H2.2°,S32.16%,B100%と表示される(図25)。
- (6) 両端の分岐点には、中央分岐点の色相Hと彩度Sは同じ

にして、明度Bには40を引いた値の60を入力する。

なお,濃色地白絣は,淡色糸と同じように黒地白絣の黒 を濃色に変更する方法で作成した。淡色糸と濃色糸の両端 色の明度Bは,中央色よりも同系色で暗い色を作成して検 討した結果,以下の結論を得た。

淡色糸:中央色 マンセル値をRGB変換さらにHSB変換パ :両端色 H,Sは中央色と同じ,Bは(中央色B-40)%

濃色糸:中央色 マンセル値をRGB変換さらにHSB変換

":両端色 H,Sは中央色と同じ,Bは(中央色B-20)%

図20 5 Rのカラーチャート

₹. •		::o o::	0	a :	0	Que	* #	0		ë‡
	(B) (C)		u(∷ ∷ ⊓	0.	10 0	80	* 6	ġ.	-	Ť.
		:0	0	ĵo	10	***		諢	Ф÷	
**		*□		Ċ.	ìo	*		聪		
*		:0:	÷.	03 20			1			1 Int #
		\$ \$	<u>n:</u>		iõ,	H.	躍	÷¢.		्
(4)		加加	n.		10	题		穏		
2. *		:0	****):c	840 049	语			Ϊ÷		
		144 ¢	01	ф Ф	16	20 011	*i±i	<u>9</u>		

図21 白地黒絣小柄パターン

図22 白糸選択

図23 中央分岐点

2. 6 パターン展開反物

イラストレータで作成した小柄パターンは、2400ppiの 高解像度でbmpデータに書き出しを行い、フォトショップ で350ppiに解像度を変更して保存した。なお、図26のイラ ストレータでの小柄を選択した後の「編集、カット、ファ イル、新規、OK、編集、ペースト、ファイル、書き出し」 と、図27のフォトショップで2400ppi画像ファイルを選択 後の「イメージ、画像解像度、350ppi、OK、ファイル、別 名で保存」の一連の作業は、両ソフトのアクション機能を 用いて作業の効率化を図った。

フォトショップの反物作成は350ppiの小柄パターンを反 物幅サイズに展開して印刷したところ,実際の反物と同じ ような立体感のある絣表現ができた(図28)。

図28 パターン展開の反物

2.7 パターン展開パネル

小柄パターンを30mm×30mmの大きさに展開し,黒地白絣の一覧表を菊全サイズでパネルを作成した(図29)。

パネルは、反物を製造する場合のことを考慮し、小柄画 像の下部に番号と名称を記載した。番号は「大島紬絣文様 集」の書籍ページで、パネル記載の小柄番号から、絣分解 図、絣締め羽割り、特記事項(織筬,釜数,品数,経絣糸 数,経地本数,両耳本数,主産地)などの情報を得ること ができる。

また、小柄パターンを14種類に分類し、その中の代表的 な柄の亀甲、ツガジュウ、赤尾木西郷、有馬、米の字、十 の字、精華、バラ、風廻し等は、Pale地黒絣、Light地黒 絣、VeryPale地黒絣など淡色系大島紬として展開し、パネ ル印刷した(図30)。淡色系の色は、上からVeryPale、Pale、 Lightと配置し、濃淡が区別しやすいようにした。

11

図29 大島紬伝統小柄文様

3 着姿シミュレーション

大島紬着姿シミュレーションソフト(紬ソフト)は、平 成9~11年度までのソフト開発^{2)~4)}と平成12~14年度まで の業界の要望を受けた応用研究^{5)~8)}及び技術支援等を行い、 既に5企業1組合に導入されている。反物を着姿表示して のネット販売、反物丸巻き保護カバー内への着姿印刷物の 添付、製造反物を着姿印刷してのカタログ作成、展示会場 での反物脇へ着姿展示など様々な利用法が考え出され反物 販売等に活用されている。

紬ソフトで使用する反復データの送柄は、反物をスキャ ナ取込みしている。大島紬の文様展開である基本4骨法の 送り(並進),曲げ(鏡映),切替(回転),送り切替(す べり鏡映)を用いた反物は、一完全文様をA3サイズに分割 して取り込み後、画像を統合して送柄を作成してきた。反 物の緯方向にアーチ型に緩やかな湾曲が見られるものもあ るが、全体に同じ条件のため接合部の処理は目立ちにくく、 反物から直接スキャンしたデータなので反物らしい質感 表現が可能である。

しかし,送柄が極端に短い小柄文様の場合は経緯糸とも に整然と並ばないため,この手法では困難であった。そこ で,今回作成した小柄パターンを使用し着姿シミュレー ションでの実験を行った。

3.1 着姿処理試験

着姿は、以下の手順で行った。

(1)反物の横幅に両耳を付けたサイズで縦方向にリピート する送柄を作成する。送柄は等身大着姿が印刷可能な横 サイズを1200ピクセルで作成(図31)。

図31 横サイズ1200ピクセルの送柄

(2) データを反物読み込みすると、図32の反物配置画面が 現れる。左右画面には送柄をリピートした反物と雛形が 表示されるが、左の反物を上下に移動すると、右のプレ ビュー画面の4雛形に絣文様が自動で貼り込まれるので ピクセル単位での移動による位置合わせを行う。

図32 紬ソフトの反物配置画面

(3) 主要4雛形に自動保存し、貼り付けコマンドで着姿のベース画像の各パーツにメッシュで変形した部分に テクスチャーマッピングを行う。

着姿印刷を行うと、ほとんどのメッシュ変形画像部分に モアレが生じた。この現象は縞・格子文様でも同じような 現象が起きることが予想されたので、2ピクセルの黒線で 縦縞・横縞・格子を白地の間隔を変えて描画した。白地の 間隔を2~16ピクセルまで変えた着姿を作成すると、いず れも白地の幅が狭いとモアレが発生した。小柄に限らず縞 や格子文様でも間隔の狭いデザインはモアレが発生するこ とがわかった。モアレを除去するため、送柄にぼかしを加 えてひきしめる画像処理を行ったが、ぼかしすぎるとクリ アな画像が得られないため、ぼかしとシャープフィルター の条件を変えて実験し、以下の結果を得た。

- (1)「フィルタ」「ぼかし(ガウス)」から半径に0.5~1.2ピクセルを入力する(図33)。
- (2)「フィルタ」「シャープ」「アンシャープマスク」から 量100%,しきい値0レベル、半径に0.1~2.0ピクセルを 入力する(図34)。

図33 ぼかし(ガウス) 図34 アンシャープマスク

この条件で印刷すると、A3印刷の場合、絣が細かすぎて 見えにくい柄もあるが、A2印刷以上では鮮明な画像を印刷 することができた(図35,図36)。

図35 小柄着姿

図36 小柄着姿拡大(帯の左下部分)

4. 結 言

イラストレータのグラデーションパレットとフォト ショップを用い,名前の付いた285個の黒地白絣,紺地白 絣,白地黒絣と地色がVeryPale・Pale・Lightトーン30種 の淡色地黒絣の立体感のある色付小柄パターンを9,405個 作成した。黒地白絣は全ての小柄で,淡色地黒絣は代表小 柄14種を選択してパターン展開を行い菊全サイズパネルを 作成した。

小柄パターン作成から着姿シミュレーション印刷まで実 験した結果,以下のことがわかった。

- (1) 糸の中間点位置は、白糸と淡色糸は糸の中央部の色彩
 を反映するよう20%,80%で、 黒糸・濃色糸は立体感を
 重視し30%,70%を用いて表せる。
- (2) 糸の分岐点における中央部と両端部の色は、明暗の差 で表現するHSB色体系で以下のように表せる。
 - 白 糸:中央色 HO° S0% B100%
 - 〃 : 両端色 HO° SO% B60%
 - 黒 糸:中央色 HO° S0% B10%
 - 〃 : 両端色 HO° SO% BO%
 - 淡色糸:中央色 マンセル値をRGB変換さらにHSB変換
 - ":両端色 H,Sは中央色と同じ,Bは(中央色B-40)%

濃色糸:中央色 マンセル値をRGB変換さらにHSB変換

- " :両端色 H,Sは中央色と同じ,Bは(中央色B-20)%
- (3) 小柄を使用した着姿シミュレーションはモアレが生じ るが、フォトショップのフィルタ機能を使用して解消で きる。小柄文様の種類や印刷物サイズで異なるが「ぼか し(ガウス)」の半径を0.5~1.2ピクセルに、「アンシャー プマスク」の量100%、しきい値0レベル、半径を0.1~ 2.0ピクセルに設定して解消できる。

参考文献

- 1)株式会社日本カラーデザイン研究所:MMカラーチャートⅡ,4-82 (2004)
- 2) 冨山晃次, 上原守峰, 徳永嘉美: 鹿児島県大島紬技術 指導センター業務報告書, 29-31(1997)
- と原守峰,徳永嘉美,冨山晃次,白田耕作,石井栄一, 石井勝:鹿児島県大島紬技術指導センター業務報告書, 52-58(1998)
- 4)上原守峰,徳永嘉美,冨山晃次,白田耕作,石井栄一, 石井勝:鹿児島県大島紬技術指導センター業務報告書, 51-60(1999)
- 5)上原守峰,徳永嘉美,今給黎正己,冨山晃次,白田耕 作,石井栄一,石井勝:鹿児島県大島紬技術指導セン ター業務報告書,31-35(2000)
- 6)徳永嘉美、山田淳人、上原守峰、西決造、池水秀俊:
 鹿児島県大島紬技術指導センター業務報告書,46-57
 (2001)
- 7) 徳永嘉美,山田淳人,上原守峰:鹿児島県大島紬技術 指導センター業務報告書,62-73(2002)
- 8)山田淳人,徳永嘉美,上原守峰:鹿児島県大島紬技術 指導センター業務報告書,74-76(2002)