吉村幸雄*,山之内清竜**

Study on DLC Thin Film Deposition Technology Using Sputtering for a Semiconductor Component

Yukio YOSHIMURA, Kiyotatsu YAMANOUCHI

DLC (ダイヤモンド・ライク・カーボン) 膜は、硬質、耐摩耗性に優れるなどの特徴を有し、様々な手法で作製 されているが、作製装置や作製条件によって、膜質や特性が変化することが知られている。そこで本研究では、半 導体部材に適したDLC膜の作製技術のひとつとして、通常、硬質DLC膜の作製に使用されるUBMS装置と、マグネトロ ンスパッタリング装置を用いて、DLC膜の作製と膜質の比較を行った。その結果、スパッタリング装置でも、本研 究で用いた条件においてUBMS装置で作製したDLC膜と同じような耐摩耗性を有する薄膜を作製することができた。 また、スパッタリング装置で作製したDLC膜における作製条件と物性との関係を把握した。

Keyword: DLC, 薄膜, スパッタ, UBMS, 耐摩耗性, ラマン分光

1. 緒 言

DLC(ダイヤモンド・ライク・カーボン)膜は、炭素系 アモルファス(非晶質)構造の薄膜の総称であり、硬質、 高絶縁性、高耐摩耗性、高化学安定性および高熱伝導性な どの特徴を有し、また滑らかな表面形態が形成できるため、 低摩擦、摺動性が求められる用途にも利用されている¹¹。 そのため、電気・電子機器(ハードディスク、ビデオテー プ、集積回路など)や切削工具(ドリル、エンドミル、カ ミソリなど)、金型(光学部品、射出成形など)、自動車部 品(ピストンリング、クラッチ板など)、光学部品(レン ズなど)PETボトルの酸素バリア膜、装飾品など幅広く応 用されている²¹³¹。

DLC膜の作製方法には、物理気相合成法(PVD;Physical Vapor Deposition)⁴⁾や化学気相合成法(CVD; Chemical Vapor Deposition)⁵⁾など真空雰囲気を利用した手法が 用いられている。しかし、薄膜の作製手法や装置および 作製条件によって、DLC膜の膜質や特性が大きく変化する ことが知られている⁶⁾⁷⁾。

そこで、本研究は、DLCの持つ熱伝導率の高い特徴を活 かした半導体部材(熱伝導シート等)への可能性を探る 要因のひとつとして、2種類のスパッタリング装置を用 いた DLC膜の作製と膜特性の比較を行った。膜特性の評 価としては、断面観察や耐摩耗性試験、膜構造の測定を 行った。また、マグネトロンスパッタリング装置で作製 したDLC膜における作製条件と物性の関係の把握を併せて 行った。

2. 実験方法

2.1 薄膜作製

DLC膜の作製には、長崎県工業技術センター所有のUBMS 装置(アンバランスド・マグネトロン・スパッタリング装 置/UBMS202型:(株)神戸製鋼所製)(図1)と、当センター 所有のマグネトロンスパッタリング装置(以下,スパッタ リング装置)(SBH-3000:アルバック(株)製)(図2)の2 機種を用いた。UBMS装置[®]は、スパッタカソードの磁場を 非平衡にすることで、基板へのプラズマ照射を強化したス パッタリング方式であり、硬質DLC膜を作製するのに適し た装置となっている。今回、スパッタリング装置^{®10}との 膜質を比較するために選定した。

図1 UBMS装置

図2 スパッタリング装置

DLC膜作製の基板 (20×20mm) には、①単結晶シリコン、 ②無アルカリガラス (EAGLE XG)、③FRP (繊維強化プラス チック)の3種類を用いた。薄膜原料には、焼結カーボン ターゲット (UBMS装置: φ6インチ、スパッタリング装置 : φ3インチ)を用い、スパッタガス種類はアルゴン (Ar) とし、DC出力にて薄膜作製を行った。それぞれの装置で調 整した主な作製条件の項目と範囲は表1のとおりである。 なお、両装置で、変更できる作製条件は、装置の構造や仕 様で異なるため、表1以外にUBMS装置では、外部バイアス

^{*}地域資源部シラス研究開発室

^{**}地域資源部

の有無, CH_iガス混合の有無について, またスパッタリン グ装置では, 作製時間(60~180min)について調整した。

装置	DC出力	Arガス圧力	T−S距離	基板
	(W/cm^2)	(Pa)	(mm)	回転
UBMS装置	11.0~16.5	0.7~0.9	160	あり
スパッタ装置	3.7~6.6	0.8~2.0	60	なし

表1 成膜条件の範囲

2.2 薄膜の評価

それぞれの装置で作製したDLC膜は、断面観察、耐摩耗 性試験、膜構造測定の試験に供した。薄膜の形状観察およ び断面観察には、FE-SEM (JSM-6330F:日本電子(株)製) を用い、成膜速度は、観察した膜厚を作製時間で割ること で算出した。耐摩耗試験には、ボールオンディスク(CSEM Instruments SA:スイス製)(図3)を用い、金属ディス クに両面テープで固定したシリコン基板上に作製したDLC 膜を用いた。直径 6 mmのタングステンカーバイド(WC)ボー ルを荷重 2 Nで印加し、速度10cm/sで10000回転の摩擦摩耗 試験を大気開放下で行った。その後、摩耗痕の形状を表面 形状測定装置(Dektak 3ST:sloan製)(図4)で測定し、 その摩耗痕面積から摩耗の度合いを求めた。

膜構造は、 ラマン分光測定装置 (System 2000 : Renisha

図3 耐摩耗性試験機

w Raman Microscope)(図5)
により,DLC膜にArイオン
レーザを照射し,これから
得られるラマンスペクトル
(図6)を,1383cm⁻¹付近の
D-バンドと1558cm⁻¹付近の
G-バンドに対応するガウス

図4 表面形状測定装置

図5 ラマン分光装置

分布でピーク分離し、これからピーク面積強度比(ID/IG) として求めた。

3. 結果及び考察

3.1 断面観察と成膜速度

スパッタリング装置では、基板上に直接DLC膜を作製す ると剥離したため、基板とDLC膜の間にTi中間層を数十nm 程度形成することで剥離がなくなった。一方、UBMS装置で は、Crの中間層を成膜するようになっており、表1の作製 条件において、剥離等はなく、いずれの基板でも表面が滑 らかで黒色系の均一なDLC膜の作製ができた。(図7)

図7 UBMS装置で作製したDLC膜

シリコン基板上に、UBMS装置(図8)とスパッタリング 装置(図9)で作製したDLC膜の電子顕微鏡による断面写 真を示す。いずれの条件で作製したDLC膜についても、表面 が滑らかで、1μm程度の膜厚を持つ、緻密な薄膜である ことが分かる。

図9 断面観察(スパッタリング装置)

3.2 耐摩耗性試験

図10はシリコン基板上に 作製したDLC膜のボールオン ディスク試験後の写真を示 す。膜質が弱いと写真のよ うな円形状の摩耗痕が見ら れる。この摩耗痕の形状を 表面形状測定装置の接触探 測定部位

図10 摩耗試験後の試料

針で測定した。測定例を図11に示す。摩耗痕の形状は、い ずれの作製条件(各装置5条件)でも、おおよそ幅100μm、 摩耗段差500Åであった。耐摩耗性の度合いは、この摩耗 痕面積を算出することで求めた。

図11 摩耗痕の形状測定

図12に、両装置において作製条件をそれぞれ5条件ずつ 変えることで作製し、摩耗痕の形状から求めたDLC膜の摩 耗痕面積を示す。両装置とも、作製条件を変化させること で摩耗痕面積に違いが見られた。スパッタリング装置で作 製した薄膜の摩耗痕面積は、2.3~3.8µm²となり、UBMS装 置で作製した薄膜の2.2~4.2µm²範囲内となった。このこ とから、今回の作製条件の範囲においては、スパッタリン グ装置で作製したDLC膜は、UBMS装置で作製したDLC膜と同 等の耐摩耗性であることが分かった。

また,ボールオンディスク試験による摩擦係数は,図13 のようにUBMS装置では0.046~0.146,スパッタリング装置 では0.048~0.074となり,両装置でのDLC膜とも無潤滑の 大気開放下で報告¹¹¹されている値の範囲となった。

3.3 ラマン分光測定

図14に、UBMS装置とスパッタリング装置で作製し、摩耗 痕面積が同等だったDLC膜について、600~2000cm⁻¹の波長 域で測定したラマンスペクトルを示す。UBMS装置で作製し たDLC膜はアモルファス炭素の典型的なブロードなスペク トルを示し、一方、スパッタリング装置でのDLC膜は強度 が低く、明瞭なピークが見られないブロードなスペクトル となった。しかし、いずれもG-バンド(1558cm⁻¹)とD-バンド(1383cm⁻¹)付近にピークは確認できた。 この1383 cm⁻¹付近のD-バンドはアモルファス(無秩序)構造に基づ き、1558cm⁻¹付近のG-バンドはグラファイト構造を反映し ている。

そこで、これらのスペクトルをガウス分布で、ピーク分離を行い、ピーク面積強度比(ID/IG)を求めた。その結果を図15に示す。作製条件を変えることでUBMS装置、スパッタリング装置ともID/IG比に違いが見られた。

この違いは、両装置とも作製出力(DC出力)で大きく変化し、作製出力を上げるにつれ、ID/IG比は小さくなった。 また、それ以外の作製条件として、UBMS装置では、外部バ イアスの無印加や、CH₄ガスを用いない場合にID/IG比が大 きくなる傾向を確認した。一方、スパッタリング装置では、 Arガス圧力を高くするにつれID/IG比が大きくなった。

ID/IG比は,DLC膜中のグラファイト結晶子サイズと関係 づけられており¹²⁾,本研究のようにピーク分離を行った際 のG-バンドの半価幅が150cm⁻¹より小さいときは,結晶子 サイズが大きくなるとID/IG比も増加する。このことから, 作製出力が大きくなるに伴い成膜速度が増加し,グラファ イト構造の成長が抑制され,微細化したものと考えられる。

一方,スパッタリング装置の作製において,Arガス圧力 が高くなるにつれID/IG比が大きくなったことは,Arガス 圧力が高くなるに伴いプラズマ密度が高くなり,T-S間距 離が60mmと短いために基板の温度が上昇し,グラファイト 結晶子の成長が起こったものと考えられる。

このことから,作製出力がID/IG比に大きく影響し,そ のほかの要因は若干影響することが分かった。また,今回 の調整した作製条件の範囲においては,UBMS装置およびス パッタリング装置でもID/IG比が同じような範囲となった ことから同じような結晶子サイズを持つ膜構造になってい ると思われる。

3.4 スパッタリング装置による作製条件と膜特性の 関係

当センター所有のスパッタリング装置におけるDLC膜の 作製条件と膜特性の関係を調べ,装置特性の把握を行った。 作製条件は,表1の範囲で調整した。

図16に成膜速度と作製条件の関係を示す。この成膜速度 は、断面観察による膜厚を測定し、それを作製時間で割る ことで求めた。

成膜速度は7~14nm/minとなり,作製出力の増加におお よそ比例して単調に速くなり,作製出力の効果が大きいこ とが分かった。しかし,Arガス圧力については,ガス圧力 の増加に伴い若干の成膜速度の増加があったが,ほとんど 影響しなかった。これは、カーボン(C)のスパッタリン グ率が0.2atoms/ionと低い¹³⁾ために、Arガス圧力を上げて も成膜速度に大きく寄与しなかったものと考えられる。

次に、図17にボールオンディスク試験後のDLC膜の摩耗 痕面積を示す。作製出力が低い場合、あるいはArガス圧力 が高い場合に摩耗痕面積が大きくなり、特に、Arガス圧力 による影響が大きかった。Arガスは、スパッタ用ガスとし て使用しているが、Arガス圧力が高くなることで、ターゲッ トから弾き出されたスパッタ粒子が基板までに飛行する途 中で、Arガスと衝突する確率が増え、飛行エネルギーや速 度が低減し、耐摩耗性の低い膜質になったと考えられる。

図18にDLC膜のラマンスペクトルからピーク分離するこ とで算出したID/IG比のグラフを示す。作製出力およびAr ガス圧力の作製条件により変化し,作製出力の減少あるい はArガス圧力が高くなるとともにID/IG比は増加した。ID/ IG比は,膜中のグラファイト結晶子サイズに由来し,結晶 子サイズが大きいほどID/IG比は高くなる。作製出力が低 く,あるいはArガス圧力が高くなるにつれID/IG比が大き くなったことは、作製出力が低く、またArガス圧力が高く なるに従って基板温度が上昇し、グラファイト結晶子の成 長が起こったためと考えられる。

摩耗痕面積の結果と照らし合わせると、Arガス圧力が低い方が耐摩耗性に優れた薄膜となっている。このことは、 結晶が微細化し、緻密な膜質となったためと思われる。

図18 ID/IG比に及ぼす作製条件の影響

以上のことから、スパッタリング装置で、作製出力やAr ガス圧力、時間を調整することで、膜質の異なったDLC膜 を作製でき、成膜条件による膜特性との関係を把握するこ とができた。

4. 結 言

今回,UBMS装置とスパッタリング装置の2種類の薄膜作 製装置を用いて,DLC膜の作製と膜特性の比較を行い,以 下のことが分かった。

- (1)スパッタリング装置では、基板とDLC膜の間にTi中間 層を数十nm程度形成することで剥離がなくなった。
- (2)いずれの装置も、シリコン基板上において、滑らかな表面で、1μm程度の膜厚を持つ、緻密なDLC膜を作製することができた。
- (3)ボールオンディスク試験後の摩耗痕面積は、スパッ タリング装置で2.3~3.8µm²、UBMS装置で2.2~4.2µ m²となり、今回の作製条件の範囲では、スパッタリン グ装置とUBMS装置で作製したDLC膜は、同等の耐摩耗 性であった。
- (4) ラマン分光測定により求めたID/IG比は,作製出力が 大きく影響した。これは,作製出力の増加に伴い,グ

ラファイト構造の成長が抑制され,結晶子サイズが微 細化したものと考えられる。

(5) スパッタリング装置によるDLC薄膜作製において,成 膜速度は作製出力の増加とともに速くなり,摩耗痕面 積はArガス圧力による影響が大きく,Arガス圧力が低 い方が耐摩耗性に優れた薄膜となった。また,ID/IG 比の増加は,作製出力の減少およびArガス圧力の増加 に影響された。

以上のことから、今回の作製条件の範囲では、スパッタ リング装置でもUBMS装置と同程度の耐摩耗性が得られた。 また、当センター所有のスパッタリング装置におけるDLC 膜の作製条件と物性との関係が把握でき、半導体部材とし ての可能性のひとつとして、物理的特性を評価することが できた。

謝 辞

研究を進めるに当たり,成膜装置や測定装置の使用およ び有益なご指導,ご助言をいただきました長崎県工業技術 センター所長の馬場恒明氏に謝意を表します。

参考文献

- 1) A.Hirai and H.Kawarada, TANSO, 128, 41-49 (1987)
- 2) 齋藤秀俊監修: DLCハンドブック, NTS出版 (2006)
- 3) 大竹尚登: DLCの応用技術, シーエムシー出版 (2007)
- 4) 權田俊一監修:21世紀版薄膜作製応用ハンドブック, 株式会社エヌ・ティー・エス (2003)
- 5) 中東孝浩: DLCハンドブック, NTS出版, p56 (2006)
- 池永勝監修:高機能化のためのDLC成膜技術,日刊工業 新聞社(2007)
- 7) 大竹尚登:表面, 45,9,22-35 (2007)
- 8) 赤利孝一郎: DLCハンドブック, NTS出版, p63 (2006)
- 9) 麻蒔立男:薄膜作成の基礎,日刊工業新聞社,p202 (1996)
- 10)小島啓安:現場のスパッタリング薄膜Q&A,日刊工業新 聞社,p59 (2008)
- 大花継頼:第38回薄膜・表面物理基礎講座,(社)応用 物理学会薄膜・表面物理分科会(2009)
- 12) J. Robertson, "Diamond-like amorphous carbon", Ma terials Science and Engineering R37, 129-281 (2002)
- 13)小島啓安:現場のスパッタリング薄膜Q&A,日刊工業 新聞社,p32 (2008)