火山噴出物を用いたスパッタリング用ターゲットの試作と それを用いた薄膜化技術の研究

吉村幸雄* , 袖山研一*

Study on Sputtering Target Formation and Thin Film Technology using Volcanic Ejecta

Yukio YOSHIMURA and Ken'ichi SODEYAMA

火山噴出物(溶結凝灰岩,桜島溶岩,桜島火山灰)を用いたスパッタリング法による薄膜化の検討を行った。 スパッタリング法による薄膜作製で必要となるターゲットは,溶結凝灰岩,桜島溶岩は原料そのものを削り出し, 桜島火山灰は焼結によって,ターゲットを試作した。このターゲットを用いた薄膜化では,いずれの原料でも, 作製条件を制御することで,金属,ガラス,シリコン,繊維などの表面に形成でき,ターゲットとしての可能性 を見いだした。火山噴出物から作製した薄膜は,光透過性,親水性,遠赤外線放射率の特性を向上させることが できた。

Keyword:火山噴出物,スパッタリング法,ターゲット,薄膜,削り出し加工

1. 緒 言

鹿児島県には、シラス以外の火山噴出物として、溶結凝 灰岩, 桜島溶岩, 桜島火山灰がある。これらは, シラスと 類似した化学組成を示し, 化学的・熱的に安定で, 親水性 があり、高い赤外線放射率を示し、耐摩耗性、耐食性に優 れるなどの特徴を持つ。このような特徴を活かし、溶結凝 灰岩や桜島溶岩のような塊状の岩石は、切断や表面研磨に より、数十cm~数mのサイズに加工され、建築資材、サウ ナ用石材、溶岩プレートなどの用途で使用されている。粒 状の桜島火山灰は必要とする粒子サイズ(数mm程度)に篩っ た選別、溶融などの加工により、陶磁器の釉薬、アクセサ リーなどに使われている。近年では、数µmまで粉砕して 繊維に練り込むことで赤外線効果を高めた寝具が製品化さ れている。しかし、用途拡大を図るためには、火山噴出物 を金属、繊維、プラスチックなどの各種素材の表面に直接 コーティングして複合化することで、機能性材料としての 利用が期待できる。

既報¹¹では、スパッタリング法(物理気相堆積法)を取 り上げ、シラスを用いた薄膜化について報告した。この手 法は、固体の薄膜原料(以下、ターゲット)を用い、真空 中でプラズマを発生させ、イオン化させたガスをターゲッ トに叩き付けることで、弾き出した原料成分を基材上に堆 積させて薄膜を作製する方法である。このターゲットの作 製には、原料のみで焼結が可能な放電プラズマ焼結法(SPS 法:Spark Plasma Sintering)を用いた。その結果、ガラ ス基材に剥離や失透のないシラスの薄膜を作製できること が確認できた。しかし、膜厚1µmを得るのが困難で、繰 り返しプラズマを照射することで、ターゲットが破損した。 SPS法は、迅速焼結が可能であるが、条件設定が難しく、 特殊な装置が必要[®]となる。また、シラスのようなセラミッ クス(酸化物)からターゲットを製造する場合、原料の調 整・混合、成形、焼結、加工では製造工程が多くなり、焼 結のための熱エネルギーも必要とし、硬くて脆い材料では 加工が難しく、価格が高くなる[®]。

そこで、本研究では火山噴出物を、SPS法とは異なる手 法でスパッタリング用ターゲットの試作とそれを用いた薄 膜化の検討を行った。火山噴出物には、溶結凝灰岩、桜島 溶岩、桜島火山灰を取り上げた。表1に代表的な火山噴出 物の主な化学組成を示す。いずれも類似した化学組成であ ることが分かる。なお、溶結凝灰岩は火山の噴火によって 噴出された熱い状態の火山灰が、自分の重さと熱によって 一部が溶けて結合して、硬い岩石となったものである。

表1 火山噴出物の成分(重量%)

わせ八	(-2, -2)	波尔尔尔 1月 43	₩ 白 波 山 5)		
土な成分	シラス	俗箱疑伙石	依局俗石	佞岛火山灰	
SiO_2	68.6	67.2	59.0	60.7	
$A1_2O_3$	15.1	14.8	17.4	17.5	
Ca0	2.7	5.2	8.0	5.2	
K ₂ O	2.3	2.9	1.5	1.7	
Na ₂ O	3.4	4.4	2.8	2.5	
Fe_2O_3	2.9	3.6	7.2	7.5	
残部	5.0	1.9	4.1	4.9	

^{*} 地域資源部シラス研究開発室

2. 実験方法

2. 1 ターゲットの試作

図1に、本研究で行ったターゲットの作製方法を示す。 溶結凝灰岩、桜島溶岩は原料が塊(岩石)であるため、削 り出しによる作製方法とし、桜島火山灰は原料が粉末のた め、一般的なセラミックスで使用される作製方法とした。

溶結凝灰岩は、鹿児島県伊佐市菱刈前目の岩場から採掘 した岩石をダイヤモンドコアドリルにて直径 φ75mmの円柱 にくり抜き、その円柱から円盤形状に切り出し、その上下 面を#120C砥石にて平面研削して厚さ5mmとした。

桜島溶岩は、桜島から採取した溶岩を用い、同様の手順 で加工した。これを金属製の板(バッキングプレート)に 貼り付けることでターゲットを試作した。

桜島火山灰によるターゲットについては,県内に降灰し た火山灰からゴミなどの混入物を除去して目開き500µmの ステンレス篩で分級し,比重差を利用した水洗浄を行った 後,水洗浄により底に沈殿した火山灰を熱風で乾燥した後 で100~200µmに粒度調整した。この粒度調整した火山灰 にアクリル樹脂系バインダーを加え,スラリーを調合して 所定形状の型に流し込み成形した後,大気雰囲気中 (1,000~1,100℃)で焼成して焼結体⁸⁰とした。

さらに,所定の形状に成形するために焼結体を直径 φ152mm,厚み6mmの円盤状に研削加工し,バッキングプ レートに貼り付けて火山灰ターゲットを試作した。

図1 ターゲットの作製方法

2.2 スパッタリング法による薄膜作製

薄膜の作製装置には、RFマグネトロンスパッタリング装置(アルバック九州(株)製,SBH-3000)(以下,スパッタ

リング装置)を用いた。薄膜を作製する際の下地基材とし て、金属(SUS304)、ガラス、シリコン、繊維(ポリエス テル)の4種類とした。ターゲットには、前述した溶結凝 灰岩、桜島溶岩、桜島火山灰から試作したターゲットを用 いた。スパッタガスは、アルゴン(Ar)のみとし、ガス圧 力はAr=0.5Paとした。また、基材の温度が上がらないよう に、基材加熱を行わない条件で薄膜の作製を行った。

調整した主な作製条件の項目と範囲は、表2のとおりで ある。作製出力(高周波:RF),作製時間をそれぞれ調整 することで薄膜を作製した。なお、ターゲットと基材(T/ S)間の距離は70mmと一定にした。

表2 作製条件の範囲

ガス種類	Arのみ (ガス圧力:0.5 Pa)			
作製出力(RF)	100, 200, 400 W			
作製時間	30, 60, 120 min			
T/S間距離	70 mm (一定)			
基材加熱	なし			
基材回転	なし			

2.3 加工した火山噴出物の評価

2.3.1 空隙率の測定

円盤形状に削り出し加工した溶結凝灰岩, 桜島溶岩につ いて2枚の円盤サンプルの上平面部をCCDカメラで, それ ぞれ撮影し, 画像を凹部と平坦部の二値化処理により区別 し, 空隙率を求めた。撮影した箇所は, 面積11cm²の4視 野とした。

2.3.2 熱伝導率

同様に円盤形状に加工したサンプルについて,上下の平 面部9箇所をQTM迅速熱伝導率計(京都電子工業(株)製: QTM-D2)で測定を行った。

2.3.3 成分分析

化学組成については、蛍光X線分析装置(理学電機工業 (株)製:RIX-3000)により、元素分析を行った。分析領域 は円盤形状のサンプル中心部のφ30mmとした。

2.4 薄膜の膜質測定

基材との剥離が生じなかった薄膜について、以下の項目 を測定した。

2.4.1 拡大観察

シリコンおよび繊維に作製した薄膜について,断面および表面観察を電解放出形走査電子顕微鏡装置(FE-SEM:日本電子(株)製,JSM-6330F)により行った。

2.4.2 膜厚測定

シリコンに作製した薄膜をオージェ電子分光装置(AES:日本電子(株)製, JAMP-7810)により,深さ方向分析(Depth法)で行った。なお,膜厚はAES装置で設定しているSiO₂

のエッチング速度(深さ速度)から換算することで求めた。

2.4.3 表面粗さ

薄膜表面の最大高低差や平均面粗さの測定には走査型プ ローブ顕微鏡装置((株)日立ハイテクノロジーズ製:Nano cute)を用いた。測定範囲は2μm角とした。

2. 4. 4 成分分析

電子線プローブマイクロアナライザ(EPMA:日本電子 (株)製,JXA-8230)の波長分散型検出器(WDS)により行っ た。分析領域はφ10μmとした。

2.4.5 結晶性

原料に用いた火山噴出物および作製した薄膜を,X線回 折装置((株)リガク:Ultima IV)により結晶性の測定を 行った。測定は2 θ/θ 法で行い,測定条件として,Cu管球 を使い,スキャン範囲は10~60°,スキャン速度は2°/m inで行った。

2.5 薄膜の物性測定

2.5.1 透過率の測定

ガラス基材に薄膜を作製したサンプルについて,波長領 域240~2500nmで光透過率の測定を行った。装置は,透過 率測定装置((株)島津製作所製:UV-3150)を用いた。

2.5.2 赤外線放射特性

繊維(ポリエステル)基材の片面に、3種類の火山噴出 物を約1 μ mの薄膜で作製したサンプルについて、遠赤外 線分光放射率計(サーモフィッシャーサイエンティフィッ ク(株)製:FIR-1002)で測定した。サンプルの設定温度は 60℃とし、測定波長は4~20 μ mとした。また、積分放射 率は4~20 μ m波長域で算出した。

2.5.3 ぬれ性

装置には、自動接触角計(クルス社製:DSA20B)を使用 した。サンプルは、繊維(ポリエステル)基材に溶結凝灰 岩を約1µmで薄膜作製したものを用いた。針先に作った 2µLの蒸留水の液滴を手動でサンプルにゆっくりと近づ けて、液滴がサンプルに接触した直後の液滴の変化を測定 した。

3. 結果および考察

3. 1 ターゲットの試作

溶結凝灰岩, 桜島溶岩を削り出しにより, 円盤状に加工 し, バッキングプレートに貼り付けて図2のようなター ゲットを作製することができた。円盤への削り出し加工で は, 原料の割れや角部の欠けも見られず, 簡易な加工でも 可能なことが見いだせた。桜島火山灰においても, 焼結条 件を最適化させることでターゲットの試作ができた。

3.2 スパッタリング法による薄膜作製

前述で試作した3種類のターゲットを用いて,スパッタ リング法で薄膜作製を行った。作製条件を表2の範囲に調 整することで,金属,ガラス,シリコン,繊維のいずれの 基材でも薄膜作製できることが分かった。図3に,代表例 として,金属,ガラス,繊維に溶結凝灰岩の薄膜を作製し た写真を示す。

素地が銀色の金属では、光干渉により虹色に見えるが、 ガラス、繊維では、基材素材の色味を損なわずに薄膜の形 成ができた。ガラス基材では失透もなく、繊維基材では熱 変形や焦げも生じさせずに薄膜を形成できた。

溶結凝灰岩 桜島溶岩 桜島火山灰図2 火山噴出物から試作したターゲット

溶結凝灰岩の薄膜 (200W, 30min, Ar=0.5Pa)

(200W, 2h, Ar=0.5Pa)

金属基材

ガラス基材

繊維(ポリエステル)基材 図3 各種基材への薄膜作製

凶る 谷裡本村への 海族作業

3.3 加工した火山噴出物の評価

円盤加工した溶結凝灰岩,桜島溶岩,桜島火山灰の固形 物としての測定結果を示す。

3.3.1 空隙率の測定

空隙率を表3に示す。溶結凝灰岩では10%強,桜島溶岩 では20%前後となった。同じ原料であっても,測定する場 所や作製した原料によってはバラツキが見られた。これは、 天然原料のために,成分や空隙が無秩序に分散しているた めである。特に, 桜島溶岩は原料自体に鬆(す) が多いた め、溶結凝灰岩から削り出し加工したものに比べてやや高 い空隙率となった。桜島火山灰による円盤加工したものは, 人工的に粒度調整を行い、焼結しているため、均一な構造 となっており空隙率は小さいために測定は行わなかった。

種類	測定値(4視野)				平均
溶結凝灰岩①	15	12	11	12	13
" (2)	13	9	7	14	11
桜島溶岩 ①	19	23	25	22	22
" (2)	20	2	21	16	19

表3 空隙率(%)

3.3.2 熱伝導率

溶結凝灰岩では0.8~1.2W/mK, 桜島溶岩では0.7~0.9W/ mK, 桜島火山灰では0.4W/mK程度であった。溶結凝灰岩, 桜島溶岩は、原料からの削り出し加工のため空隙が無秩序 に分散しておりバラツキが見られ、空隙率の少ない溶結凝 灰岩で若干高くなった。一方、桜島火山灰では、均一な焼 結体となっているため、数値のバラツキはほとんどなかっ た。これらの火山噴出物は、既報のシラスSPS焼結体の0.6 W/mKよりも高い数値を示した。

3.3.3 成分分析

元素分析の結果を表4に示す。構成元素は、本研究で取 り上げた3原料でいずれも類似しており、主な成分として は、SiO₂が6割、Al₂O₃が1割強となっている。桜島溶岩、 桜島火山灰ではFe₂O₃が若干多い傾向が見られた。

主な成分 溶結凝灰岩 桜島溶岩 桜島火山灰 SiO_2 67.2 61.3 59.8 $A1_2O_3$ 14.8 16.2 13.5 6.5 Ca0 5.2 10 2 K_2O 2.9 2.3 1.8 Na_20 4.4 4.2 5.1 Fe_2O_3 3.6 6.1 6.5 1.3 2.2 3.2 MgO TiO_2 0.4 0.8 残部 0.2 0.4

表4 円盤の成分分析(重量%)

この結果は、表1の文献等で報告されている化学組成と 大きく異なっていないことから, 取り上げた原料が限定的 に採取されたものではないことが分かる。

3.3.4 ターゲットの検討

削り出しによる簡易な機械加工でも、円盤加工時に割れ たり、角部が欠けることなく円盤形状に加工ができた。そ の後、バッキングプレートに貼り付けることで、それぞれ のターゲットが作製できた。これにより、従来法の セラミックスのターゲット作製よりも, 製造工程を省け, 焼結の熱エネルギーを使わないため,低コスト化が図られ る。また、ターゲットには、円盤、四角板、円筒形などが あり,本研究での簡易な機械加工であれば,このような複 雑形状にも任意に適応できる特徴を見いだせた。

当該ターゲットを用いて,スパッタリング法による薄膜 作製を行ったが、プラズマの異常放電も発生せず、繰り返 しのプラズマ照射でもターゲットが破損せずに使用するこ とができた。通常、ターゲット表面はプラズマが照射され るため高温になり、裏面は冷却水で冷やされている。その ため、ターゲットは温度差による熱応力や熱変形が生じて 割れや破損につながる[®]。火山噴出物によるターゲットは, シラスSPSターゲットに比べ、熱伝導性が高いために、熱 応力等が緩和され割れにくくなったと思われる。また、桜 島溶岩のターゲットで空隙率が最大25%の箇所があった が、安定したプラズマ発生ができたことから、これ以下の 部分的な空隙であれば問題なく使用できることが分かっ た。

3.4 薄膜の膜質測定

溶結凝灰岩、桜島溶岩、桜島火山灰から作製した薄膜の 膜質評価について以下に報告する。

3.4.1 拡大観察

代表例として、溶結凝灰岩を用いて、シリコン、繊維基 材に薄膜作製した断面観察を図4に示す。シリコン基材側 の断面観察の写真から, 膜厚1 μm程度の均一な薄膜となっ ており、ハックルマークが見られることから、ガラス質の 緻密な薄膜になっていると推測される。また、繊維基材側 の観察写真からは、繊維表面に沿った形で薄膜が均質に形 成されており,表面の凹凸も少ないことが分かる。

このような薄膜は、桜島溶岩、桜島火山灰から作製した 薄膜でも同様になっていることを確認している。

シリコン基材 図 4 電子顕微鏡写真

繊維基材

3.4.2 膜厚測定

図5に膜厚と作製条件との関係を示す。いずれも同じ作 製出力であれば,作製時間が長くなるにつれ,相対的に膜 厚が厚くなる。同じ作製出力(RF100W)にした際の溶結凝 灰岩,桜島溶岩,桜島火山灰の膜厚の関係を見ると,作製 出力と作製時間が同じであれば,同程度の膜厚となり,原 料の違いによる差は見られなかった。これは,類似した化 学組成のため、プラズマで弾かれる粒子(スパッタ率¹⁰⁾) に違いがないために,同等の成膜速度になったと思われる。 溶結凝灰岩において,作製出力を上げると同じ作製時間で も膜厚が厚くなった。このことから,本研究で取り上げた 火山噴出物の原料では同程度の成膜速度であり,作製出力 と作製時間によって膜厚を制御できることが分かった。

3.4.3 表面粗さ

図6(a)(b)に、走査型プローブ顕微鏡装置による データを示す。測定サンプルは、代表例として、溶結凝灰 岩をRF200W、2h、Ar=0.5Paで薄膜作製したものを取り上 げた。他の火山噴出物および作製条件の薄膜と比較したが、 表面状態に大きな違いは見られず、同様な傾向であった。 図6(a)は、測定領域2 μ m角における表面凹凸を測定 したデータである。この測定域内での最大高低差が19.6nm (平均面粗さ*Ra*は2nm)であった。図6(b)は、測定領

域内の中心を通る断面の段差を測定したものである。この ように凹凸があるように見えるものの段差が20nm以下と非 常に小さいため,平滑な表面の薄膜であることを確認した。

3. 4. 4 成分分析

溶結凝灰岩から作製した薄膜のEPMAによる成分分析の結 果を図7に示す。図中のピークは、検出された成分を示し ており、溶結凝灰岩に含まれている、Si, Al, Ca, K, Fe, Na, Mgが検出されている。このことから、薄膜中に構成成 分のミネラル成分が転写されていることが分かる。これは、 他の原料(桜島溶岩,桜島火山灰)から作製した薄膜でも 同様な成分が検出されており、ミネラルを含んだ薄膜であ ることが分かる。

(a) 薄膜の表面観察

3.4.5 結晶性

ターゲットに使用した桜島溶岩の原料と,それをシリ コン基材に薄膜作製したサンプルのX線回折パターンを 図8に示す。原料の桜島溶岩では,石英や長石などの結晶 ピークが多数見られ,結晶質の塊から構成されていること が分かる。一方,薄膜にした方では,鋭いピークは見られ なくなり,2θ=23°付近にブロードな形が見られる。こ れは,ガラス質(非晶質)の特有な形である。2θ=35° のピークは下地基材のシリコンのピークであり,それ以外 のピークは見られない。このことから,FE-SEM観察ではハッ

桜島溶岩(薄膜)図8 X線回折パターン

クルマークが見られたことと併せて,結晶質だった原料から,ガラス質の薄膜として形成できていることを示している。これは溶結凝灰岩,桜島火山灰でも同じ結果であった。

3.5 薄膜の物性測定

以下には,ガラスや繊維に薄膜を作製した際の物性を測 定した結果を示す。

3.5.1 透過率の測定

図9に、溶結凝灰岩を作製出力、作製時間を変えて薄膜 作製した光透過率を示す。ガラス基材のみは380~2,500nm の波長域において92%の透過率であったが、薄膜を作製し ても可視光線(380~780nm)の波長域では90~92%の透過 率となった。可視光以上の波長領域ではガラス基材と同様 な透過率であり、作製条件によらず、光透過率90%以上の 薄膜であり、ガラスと同等の光透過性があることが分かっ た。これは、XRDパターンによるガラス質構造体であるこ と、平均面粗さRa2.0nm以下であることからも光透過性に 薄膜が影響していないことが示される。

3.5.2 赤外線放射特性

赤外線放射スペクトルを図10に示す。それぞれの火山噴 出物の薄膜を作製することで赤外線放射率が高くなってい る。原料の種類では、桜島溶岩が最も高く、次に桜島火山 灰となった。これは、構成成分に鉄を多く含んでいるため と思われる。また、膜厚が厚くなるにつれて、放射率が

0.16秒後

水滴が接触する直前 (O秒)

(a) コーティングなし(b) コーティングあり図11 ぬれ性の比較

高くなる傾向となった。波長域4~20µmにおける積分放射 率で比較すると、ポリエステルのみは74.4%であったのに 対し、最も高い桜島溶岩が84.1%、桜島火山灰が82.3%、 溶結凝灰岩が79.9%であった。このことから、ポリエステ ル基材表面に1µm程度の火山噴出物の薄膜を覆うことで、 赤外線放射率が約1割高くなることが分かった。

3.5.3 ぬれ性

図11は、ぬれ性の時間経過に伴う比較を示す。ポリエス テル基材では、液滴が接触した後、2秒経っても表面張力 で液滴が球状に残った状態となっている。一方、溶結凝灰 岩の薄膜を作製した方は、0.12秒後には、液滴が基材表面 にぬれ広がり、液滴の形状が見えなくなった。これは、溶 結凝灰岩に多く含まれているシリカ成分による親水性の効 果のためと思われる。この効果は、桜島溶岩、桜島火山灰 を用いた薄膜でも同様な結果が得られている。ポリエステ ルの表面のみに薄膜を作製しているため、生地への目詰ま りやダメージはなく、素材の性質を活かしたまま、親水性 を付与できたことになる。

4. 結 言

本研究では、火山噴出物として、溶結凝灰岩、桜島溶岩、 桜島火山灰を取り上げて、簡易な機械加工と焼結による ターゲットの試作と、ターゲットとしての可能性を検討し た。また、これを用いたスパッタリング法による薄膜の作 製と、その薄膜の評価を行った。これにより、以下のこと が分かった。

- (1) 溶結凝灰岩と桜島溶岩から削り出し加工により、ター ゲットとしての簡易な機械加工の有効性を確認した。ま た、桜島火山灰を焼結によりターゲットとして作製でき ることも確認した。
- (2) 削り出し加工によって、火山噴出物の空隙率を25%以下、熱伝導率を0.7W/mK以上に調整すれば、ターゲットとして使えることが分かり、プラズマの繰り返し照射でも割れることはなかった。
- (3)火山噴出物から作製したターゲットを用いた薄膜作製では、いずれの原料でもミネラル成分を転写し、表面が滑らかで、緻密なガラス質の薄膜になることが分かった。
- (4) この薄膜は、金属、ガラス、シリコンおよび繊維などの様々な基材上に作製することができた。

- (5) 膜厚は、作製出力と時間で任意に制御できることができ、シラスSPSターゲットでは困難だった1μm厚さも作製できることができた。
- (6) いずれの火山噴出物でも、380~2,500nm波長域におい て,光透過率90%以上を得ることができる薄膜となった。
- (7) ポリエステルに薄膜作製することで、未処理に比べて 積分放射率が上がった。溶結凝灰岩は、シラスと同程度 であったが、桜島溶岩、桜島火山灰では最大約1割高め ることができた。
- (8)素材の性質を活かしたまま、表面に親水性を付与する ことができた。

最後に、本研究の結果により、特許第6707740号「ター ゲットの製造方法および薄膜の製造方法」の登録につな がった。

謝 辞

研究を進めるに当たり,スパッタ技術や評価技術につい て有益な指導を賜りました(株)アルバック先進技術研究所 超材料研究所 森田正氏,アルバック九州(株)代表取締役 社長 山口堅二氏に謝意を表します。

また,遠赤外線放射測定装置,自動接触角計の使用およ び助言を頂きました長崎県窯業技術センター山口典男氏, 秋月俊彦氏に感謝いたします。

参考文献

- 吉村幸雄ら:鹿児島県工業技術センター研究報告,30, 43-47(2016)
- 2) 黒岩忠春:日本鉱業会誌,91(1052),625-628(1975)
- 3) 吉村幸雄, 袖山研一: 特許 第6707740号(2020)
- 4) 出雲茂人ほか:金属,2(865),29-37(1992)
- 5) VSI (火山珪酸塩工業)研究会: "新時代を築く火山噴出 物"株式会社リアライズ社(1995) p. 3
- 6) 鴇田正雄:セラミックス,49(2),91-96(2014)
- 7) 伊東昭夫:"薄膜材料入門"裳華房(1998)p.125
- 8) 小池晋ら: 特開2018-8829
- 9) 樫村幸辰ら: "日本機械学会関東支部ブロック合同講演 会" (2001) p. 279-280
- 10) 麻蒔立男:"薄膜作成の基礎"日刊工業新聞社(1996) p. 199