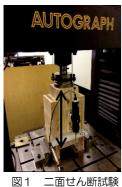
地

CLTを活用した在来軸組工法用高耐力壁の開発


地域資源部

CLTの高耐力・高剛性を活かした在来軸組工法用の高耐力壁を開発するために、予備試験に より、仕様の選定および壁倍率推定を行い、その結果をもとに実大サイズの耐力壁を作製後、 面内せん断試験を行い、壁倍率の算定を行いました。その結果、壁倍率5倍を達成するための 仕様が明らかになりました。

①予備試験(各仕様のせん断性能比較)

②実大試験体での壁倍率の算定

簡易試験体面内 せん断試験

面内せん断試験方法

正負交番繰り返し加力

見かけのせん断変形角

 $1/450 \rightarrow 1/300 \rightarrow 1/200 \rightarrow 1/150$ \rightarrow 1/100 \rightarrow 1/75 \rightarrow 1/50rad

の順に各3往復

繰り返し加力終了後,

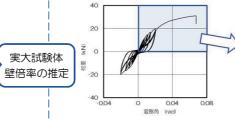

1/15radまで加力し、最大荷重を測定

図3 実大試験体

短期基準せん断耐力と 釘(ビス)1本あたりの耐力を算出

各仕様で実大試験体を作製した場合に想定される 釘(ビス)位置座標を用いて、釘配列諸定数を計算

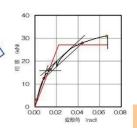


図4 測定データの完全弾塑性モデル化

表1 予備試験結果

仕様						真壁		
接合具	ピ	ス	CN75			CN90		
留め間隔(mm)			100			120	150	100
CLT方向(鉛直)	強	33	強	強	33	強	強	強
短期基準 せん断耐力(kN)	2.99	3.04	3.13	3.92	4.20	3.20	3.19	5.07
1 本あたりの 耐力(kN)	2.39	2.35	2.00	2.64	2.64	2.13	2.01	4.08
期待壁倍率(倍)	5.37	6.03	5.94	6.72	7.39	5.47	3.94	-

この仕様で実大試験を行うことに決定

※壁量計算で使用できる壁倍率は5倍が最大であり それを超えた場合でも5倍として適用される ※過剰に高い倍率を5倍として設計に使用すると、 家全体の耐力に偏りが生じてしまう可能性がある

表2 短期基準せん断耐力(Po)の算出

番号	Py	Pu • (0.2/Ds)	2/3 • P _{max}	P1/120rad			
1	14.16	10.91	17.40	11.89			
2	14.27	10.68	17.20	10.77			
3	15.85	12.30	20.67	12.59			
平均	14.76	11.29	18.42	11.75			
変動係数	0.052	0.063	0.086	0.064			
ぱらつき係数	0.975	0.970	0.959	0.970			
平均×ばらつき係数	14.40	10.96	17.67	11.40			
短期基準せん断耐力	10.96						

壁倍率 = P_0 / (1.96×L) × α = 10.96/1.96 = 5.59

% L:壁の長さ(m), α :使用環境や施工性の影響による低減係数 (今回は1)

CLTを適用した高倍率の耐力壁を使うことで, 建築物の地震等への耐力が確保できるので、開放 的な室内空間の実現など, 設計の幅が広がります。

CLT, 耐力壁, 在来工法, 壁倍率、面内せん断、 完全弾塑性モデル化, 短期基準せん断耐力

